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We consider a linear polymer in a flat membrane exposed to a lateral tension ¥, The polymer is as-
sumed to produce a sharp bend in the membrane so that in its straight state it gives rise to a symmetric
ridge of width A=1"«k/y,, k being the bending rigidity of the membrane. We calculate the effective in-
plane bending energy of the polymer that originates from the deformation of the membrane ridge. The
parameter controlling the energy as a function of curvature of the polymer is AK/k, where AK is the
difference of the moduli of Gaussian curvature of unpolymerized and polymerized lipid. Depending on
its value, the presence of the ridge increases the persistence length or destabilizes the straight
configuration of the polymer. Destabilization occurs on both sides of a range of stability, leading in the
case of circular configurations to craters with a depressed or elevated interior.

PACS number(s): 68.10.—m, 68.15.+e€, 43.64.+r

INTRODUCTION

Fluid lipid membranes with inclusions model biological
membranes consisting of a lipid matrix with incorporated
proteins. A special kind of such inclusions are cross-
linked or linear polymers spread in the membrane as in a
two-dimensional solution. They can be produced by uv
irradiation of bilayers containing a polymerizable lipid
[1-6]. Also, water soluble polymers can be anchored to
the bilayer surface if they contain groups with one or two
long alkyl chains [1]. Cross-linked polymerization was
found to produce a very strong wrinkling of the bilayers
[2—4], while linear polymerization linking up to 10*
monomers resulted in the formation of bulges and buds
on vesicle membranes [5]. Evidently, both kinds of poly-
mers are capable of producing a spontaneous curvature in
an initially flat, symmetric bilayer.

In theoretical work, we recently considered the effect
of linear polymers treated as two-dimensional self-
avoiding random walks on the bending elasticity of fluid
membranes [7,8]. We also studied the interaction of
linear polymers with tethers, i.e., thin bilayer tubes pulled
from vesicles, showing that polymers may align parallel
to the tether and thus deform its cross section [9].

The interaction of polymer configuration and mem-
brane shape is a complicated problem which has to be
solved step by step. So far, we have assumed the polymer
to be a continuous sequence of loosely linked monomers,
all in the same monolayer. The persistence length of such
a chain equals the distance between subsequent constitu-
ents. The linked monomers were taken to differ from sin-
gle monomers only in their local monolayer spontaneous
curvature.

If for some reason such a polymer is straight it gives
rise to a sharp bend of the bilayer along the line where it
is embedded. The result would be a roof (or a V-shaped
valley) in the case of an unstressed bilayer. The molecu-
lar basis for such a shape is considered in detail in the
Appendix. When a lateral tension tends to keep the
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membrane flat, the straight polymer will be at the peak of
a membrane ridge (or at the bottom of a furrow) the sides
of which gradually bend into the plane of the undisturbed
membrane.

The present paper deals with the effective energy of the
in-plane bending of the linear polymer that arises from
the bending elasticity of the membrane forming the ridge.
Any elasticity of the polymer backbone is omitted in the
following calculations, in accordance with a loosely
linked chain.

A single polymer is considered which is assumed to be
uniformly curved in the plane of the membrane. Neglect-
ing fluctuations, we find either the straight configuration
or circles to have the lowest free energy per unit length of
the polymer. We also derive the effective bending
stiffness for the straight configuration. An estimate sug-
gests that it can lead to a dramatic increase of the per-
sistence length of the polymer. While the ridge is sym-
metric for the straight polymer, it is in general tilted for
circular configurations. We will show that the central pa-
rameter controlling tilt and curvature of minimum ener-
gy is Ak/k. In this ratio, « is the bending rigidity of the
nonpolymerized surfactant, and Ax the difference of the
moduli of Gaussian curvature between unpolymerized
and polymerized material. The circular ridges resemble
craters with a depressed or elevated center, depending on
whether the tilt is inward or outward. Prevented from
splitting up into circles, a long polymer chain may in-
stead be expected to curl up into many loops.

MODEL

We consider a single polymer embedded in a sym-
metric bilayer. The flat bilayer is exposed to a lateral ten-
sion y,>0. Deviations of the membrane from the flat
state are expected only in a vicinity of the polymer, their
decay length A=1"k/y, (see below) being controlled by
the interplay of lateral tension and bending elasticity.

The polymer may be a chain of polymerized surfactant
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FIG. 1. Circular ridge formed by polymer
in an otherwise flat membrane exposed to la-
teral tension.

molecules in one of the monolayers or a hydrophilic
chain anchored at regular intervals on one side of the
membrane. The polymerized surfactant molecules or the
surfactant molecules anchoring the chain will, as a rule,
produce a local spontaneous curvature in the otherwise
symmetric bilayer. Accordingly, each of the surfactant
molecules belonging to the polymer forms a hat and the
polymer chain forms a ridge in the membrane. The angle
@ by which the membrane bends at the top of the ridge
will be called ridge angle. For simplicity, this angle is as-
sumed to be sharp, uniform, and insensitive to lateral ten-
sion in the following calculations.

Actually, the bend of the top of the ridge is spread over
a molecular width along a continuous chain of polymer-
ized surfactant molecules. Moreover, the cross section of
a ridge resulting from separate anchoring molecules is
nonuniform even when they are regularly spaced. In-
spection shows the uniform approximation to be justified
for regular spacing when the decay length A and the ra-
dius of polymer in-plane curvature are much larger than
the spacing of the anchors.

The bending elasticity of a symmetric bilayer is charac-
terized by its bending rigidity x and vanishing spontane-
ous curvature [10]. The modulus of Gaussian curvature K
does not enter if the bilayer retains its topology and is
homogeneous. The second condition is violated when a
different value of the modulus &, holds for the surfactant
molecules belonging to the polymer. The difference be-
tween the moduli of Gaussian curvature Ak=k—k, will
be an important quantity in the following. The value of
the bending rigidity of the polymerized molecules should
not matter as they form a very narrow strip which is in
its spontaneously curved state. The contribution of the
strip to the regular bending energy (k term) seems negligi-
ble except for very high curvatures of the polymer.

We want to calculate the total bilayer bending energy
per unit length of membrane ridge, considering polymers
which can be straight or uniformly curved in the plane of
the bilayer. For simplicity, the curved polymers are tak-
en to be closed rings of radius p. Another property
characterizing the conformation of the system is a tilt of
the ridge with respect to the plane of the flat bilayer. The
tilt angle 6,, defined by Fig. 1, is counted positive for out-
ward tilt. While straight ridges are always symmetric
(6,=0) in the state of minimum energy, we will find cir-
cular ridges to display as a rule outward or inward tilt.

PROBLEM AND MAIN EQUATIONS

The free energy per unit area of curved bilayer may be
written as

y=vot+ikJ?+kK , (1

where J =c;+c, and K =cc, are the total and Gauss-
ian curvatures, respectively, ¢; and c, being the principal
curvatures. This quantity is the sum of the lateral ten-
sion Y, of the flat membrane and the bending tensions in
their usual form. The total free energy can be calculated
by integrating (1) over the membrane area

F=[yda4 . )

To determine F for a circular membrane ridge (Fig. 1) we
need to know the dependences of the curvatures on the
radial coordinate r, i.e., J(r) and K (r). The total curva-
ture can be found from the equilibrium equation [11]

2, 1dl 7o
dr? r dr K

which neglects all terms of higher than linear order in the
curvatures. Note that generally K terms drops out of
shape equations. Both the total curvature and the Gauss-
ian curvature can be expressed by the gradient angle y of
the membrane contour (see Fig. 1). To lowest order we
have

J=0, (3)

=X X @)
dr r
and
—Xdx
kK r dr ’ 5)

Equations (3) and (5) are valid for || <<1 or, equivalent-
ly, |J| << 1/r.

MEMBRANE SHAPE

Considering a circular polymer of radius p, we solve
the equilibrium Eq. (3) for the membrane inside and out-
side of the circle of radius p (Fig. 1) and distinguish the
respective quantities by subscripts in and out. The
boundary conditions for (3) are conveniently expressed by
the gradient angle Y which becomes zero at large radii,
Xou(r—©)=0, and at the center of the circle,
Xin(r =0)=0, in the latter case because of rotational sym-
metry. Moreover, the two values of the gradient angle at
the circle are related to the ridge angle through

* Xinl? =p)—Xoulr=p)=g, . (6)

The tilt angle 6,, as yet a free parameter, can be ex-
pressed by

Xinl? =p)+Xoulr =p)=—26, . 7)

Solving first (3) and then (4) with the respective boundary
conditions and using (6) and (7), we obtain [12]
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(Lpo—6,) Io(r/A)

L= , 8
Tin A I,(p/A) ®
—(lo—6 I,(r/)) ©)
Xin_ 7(p0 t I](P/A-) ’
and
(Lpo+6,) Kyo(r/A)
Jour= o o’ (10)

A K(p/A)’
K (r/7)

—_— . 11

Xout= -(%‘Po"'ez )
Here A=1/k/7, is the characteristic length determining
the decay of deviations of the membrane from the flat
state, while Iy(r/A), I,(r/A), Ko(r/A), and K, (r/A) are
modified Bessel functions [12].

MEMBRANE FREE ENERGY

To calculate the free energy of the membrane we in-
tegrate according to (2) the lateral tension (1) over the
membrane surface, employing (8)—(11), and subtract the
free energy of the flat membrane (which is y, times the
area of the flat membrane). The resulting free energy per
unit length of polymer is

Iy(p/A) Ky(p/R)
=l£O— 1o, —0 2+L£L___ lo.+6 2
S =2 T pm BP0 Ty e (Pt 00
e
——p" b, - (12)

Alternatively, the first and second terms of (12) can be de-
rived directly by integrating the work of the bending mo-
ment «kJd y done at the circle on the inner and outer parts
of the membrane, respectively. The third term can be ob-
tained directly from p, 6,, and ¢, on the assumption that
l@ol, 16, << 1. Minimizing (12) with respect to the tilt an-
gle 6,, we find the equilibrium value

Io(p/A)  Kolp/X) | AwrA
Ii(p/A) K (p/A)
0, =1L HE . (13)
2 Iop/A)  Kolp/A)
I,(p/A) K, (p/A)

Inserting this in (12) leads to the final formula for the en-
ergy per unit length

Tolp/A)  ArA | | Kolp/A) — AkA

— | Ii(p/A) Kp K,(p/X) Kp
—1.2
F=398V 7ok Iop/Ah)  Kolp/A)
I.(p/A)  K(p/A)

(14)

The last two equations permit us to calculate 8, and f as
functions of the circle radius p.

STRAIGHT POLYMER

First, let us consider the stability of straight
configuration of the polymer (1/p—0). The expansion
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of (14) up to the first nonvanishing order in 1/p gives

}\2

e

3

8

1, A%

f=165V vor |1+ St (15)

Defining an effective in-plane bending stiffness of the po-
lymer p,, through the formula

1
f:f0+%.up? ’

where f,= -}(ﬁ%\/ _7/—07( is the free energy of the straight
ridge, we obtain from (15)

172 3
8

3 2

Yo

1 Ar
+
2 K

(16)

The dimension of p, is energy times length, while that of
k is energy. As long as p, is positive, the straight
configuration of the polymer represents an energy
minimum. It will be shown below that the minimum can
be absolute or local. The sign of u, is determined by the
ratio Ak /k introduced above. Evidently, p, is positive as
long as AK/k is within the limits

~ 13+ <137 (17)

If AK/k is not in the range (17), the straight configuration
of the polymer is absolutely unstable and the chain tends
to bend in the plane of the membrane. We will come back
to curved equilibrium states later on.

Even if the bending stiffness of the polymer is positive
U, >0 the straight configuration will be disturbed by
thermal fluctuations. Such fluctuations may destroy
directional correlation and result in a mean square end-
to-end distance Ry (Flory radius) of the chain much
smaller than its total length. The value of Ry is governed
by the number N of independent persistence lengths into
which the polymer can be divided, obeying Rp=£&N",
where & is the persistence length and v is a known ex-
ponent [13]. The stiffer the chain, the larger is £ and the
smaller is N. The persistence length of the chain in the
absence of a ridge is equal to the dimension of one mono-
mer which for a membrane polymer is £,~0.8 nm (diam-
eter of the lipid polar head in the plane of the membrane).

The presence of a membrane ridge increases the per-
sistence length to a value §,. Employing a well-known
formula and assuming £, >>&,, we find the persistence
length to be §,=u,/kT, where kT is the product of
Boltzmann constant and absolute temperature. Drop-
ping numerical factors, one obtains from (16) the approx-
imative formula

@5
§y=ﬁ1/"'3/’}’0 . (18)

For an estimate, which may be appropriate to partially
polymerized lipid membranes, we assume ¢;=0.1,
K=-§-10”19J (a value typical of lipid bilayers [14]) and
70=10"°J/m? [15]. This combination leads to £,=10
nm, which is considerably larger than the value &, valid
for ¢,=0. It means that the stiffening due to the ridge
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FIG. 2. Shapes of the membrane for
different tilt angles 6, of the ridge. (1) 6, is
negative, depressed crater; (2) 6, is zero,
straight ridge; (3) 0, is positive, elevated crater.
The horizontal line represents the phase dia-

-1.112 -0.032

can strongly expand the Flory radius of the polymer. If
the parameters of the system are such that the persistence
length £, is larger than the total length of the chain, the
polymer will be straight.

The tilt angle of the straight configuration of the poly-
mer is always zero, 6,=0. This follows from symmetry
and can also be seen by inserting zero polymer curvature
1/p=0 into (13). The membrane ridge then has a sym-
metric shape as illustrated by Fig. 2.

BENT POLYMER: DEPRESSED AND ELEVATED
CRATERS

Depressed craters. If AK/k is not in the interval (17),
the straight configuration of the polymer is unstable. We
consider first what happens if AK/k becomes smaller than
the lower limit of (17),

Ax

K

=—1(v3/2+1)=—1.112.
1

Figure 3 shows the energy f as a function of the dimen-
sionless polymer curvature V/ k/y(1/p) for the parame-
ter AK/k near (AK/k);. In each curve there is a curva-
ture of minimal energy which should not be confused
with a spontaneous curvature as the sign of this curva-
ture is irrelevant. The curvature of minimal energy is
zero for AK/k>(Ak/k); and nonzero for
Ak/k <(AK/k);. The transition of the curvature of
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FIG. 3. Dimensionless energy per unit length of polymer,
(2/@3V vok)f, versus dimensionless in-plane curvature for
different values of the control parameter Ak/k near
(Ak/k);~—1.112. (1) (AK/k)=—1.100; (2) (AK/k)=—1.115;
(3) (Ak/k)=—1.12.
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minimal energy to nonzero values as illustrated in Fig. 3
has the character of a second order phase transition, with
AK/k being the control parameter. To obtain the equilib-
rium curvature as a function of the control parameter
near the phase transition point we expand f up to fourth
order in 1/p,

— 3 1, AR A?
f=%¢31/1’oi<{1+ s 127 | |2
AR ’ At
+2 —Ki—i +3 ;;}. (19)
Minimization of this energy yields
172
1075y | |BE | AR (20)
p 1 K

i.e., the curvature of minimum energy depends on the rel-
ative control parameter with the critical exponent equal
to 1.

Inspection of (13) shows that the equilibrium tilt angle
6,, being zero in the straight configuration, undergoes a
transition to nonzero values together with the curvature.
Near the phase transition, it obeys
172
AR

_ Ar

1 K

6,~—0.23¢, 21)

A negative 6, means in our definition that the ridge tilts
towards the inside of the circle. As a result, the polymer
ring, if not too small, produces a depressed crater in the
otherwise flat bilayer (Fig. 2). The more negative
Ak /k—(AK/k),, the deeper is the crater.

Elevated craters. We consider next the transition from
the straight configuration of the polymer to the bent one
that takes place when AK/k approaches the upper limit
of the interval (17), (AK/k),==0.112. Figure 4 shows the
dependence of the energy f on the dimensionless curva-
ture v/ k/yo(1/p) for different parameters Ak /«. Having
at low enough Ak/k only the minimum at 1/p=0 [Fig. 4
(curve 1)], the energy develops a second minimum in a
bent configuration as the control parameter passes about
—0.05 [Fig. 4 (curve 2)]. The energy at the second
minimum becomes equal to the energy of the straight
configuration when AK/k reaches the special value

[_A.k;

K

~—0.032 .
3

(22)
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FIG. 4. Dimensionless energy per unit length of polymer,
(2/@3V vox)f, versus dimensionless in-plane curvature for
different values of the control parameter AK/k, near
(AK/K)3~—0.032). (1) (Ak/k)=—0.2; (2) (AK/k)=—0.05; (3)
(Ak/k)= —0.032 (transition value); (4) (AK/k)=—0.02.

At higher values of Ak/k the bent configuration is ener-
getically more favorable than the straight one [Fig. 4
(curve 4)]. The special value of the control parameter
(22) marks a first-order phase transition. The curvature
of minimal energy jumps at the transition point from O to

—;"ls.Z\/VO/K . (23)

The tilt angle changes at the transition from zero to
6,~0.9¢, . (24)

The positive value of 8, in the new state means that the
ridge is tilted outwards. In this case the polymer forms
an elevated crater in the otherwise flat membrane. The
larger the control parameter AK/k, the sharper is the
crater and the higher is its center. The straight
configuration remains, of course, locally stable up to

(AE/K)Z.

DISCUSSION

Our theory started from the notion that a polymer
chain produces a ridge when it is embedded in one side of
a bilayer that is stretched flat by a lateral tension. We cal-
culated the bending energy of the membrane ridge per
unit length of curved polymer. This was done for closed
circles and the ridge was allowed to tilt outward or in-
ward to assume the angle of minimum energy. The results
show that if length is measured in units of A, the decay
length of deviation from membrane flatness, the in-plane
polymer curvature of minimum energy depends solely on
the ratio Ak/k. We recall that Ak=K—K, is the modulus
of Gaussian curvature of unpolymerized lipid minus that
of polymerized lipid.

The straight configuration was found to be locally
stable in a range of Ak/k including zero. Surprisingly,
the range of absolute stability of the straight
configuration is restricted to negative values of AK/k and

does not extend up to zero. This result has to be regard-
ed with caution, because in our model a long polymer
chain is, in effect, decomposed into noninteracting cir-
cles, while the real chain is continuous. We cannot con-
ceive of a pattern of loops with an energy per unit length
as low as in widely separated circles. This is because the
hats produced by the elements of a continuous chain tend
to repel each other. We suspect that for long chains the
straight configuration is absolutely stable up to the limit
of local stability.

According to our estimate, a loosely linked polymer
embedded in a lipid bilayer can have a considerable per-
sistence length which varies with the square of a ridge an-
gle. This agrees with our previous estimate that the
thermal fluctuations of a polymer embedded in one side
of a bilayer tether do not prevent a good alignment of the
polymer parallel to the tether [9]. Such an alignment re-
quires, of course, that the ridge is directed outward and
has a sufficient angle. However, the present work also
suggests that above some very large AK/k the polymer
may prefer to spiral around the tether.

Whenever Ak/k is outside the range (7) where the
straight state is locally (and perhaps generally) stable, the
polymer may be expected to curl up. This should result
in a pattern of nonintersecting loops which seems ex-
tremely difficult to predict. The size of the loops could
reach the order of the size of the persistence length in the
absence of a ridge. One may wonder whether or not the
curling of linear polymers produces a wrinkling of the
membrane. This problem can be handled only by a
theory that goes beyond the approximation of small gra-
dient angles.

CONCLUDING REMARKS

The present calculations show that the membrane
ridge caused by an embedded polymer in a stretched
membrane can have two very different effects on the
configuration of the polymer. The ridge either increases
the persistence length of the polymer or makes it curl up
into an unknown pattern of loops. We did not consider
the interaction of different polymers through their ridges
in a stretched membrane. Such interaction is repulsive in
our case, but can be attractive as well, e.g., between a
ridge and a furrow. Other molecular interactions in
mixed membranes are equally disregarded, e.g., those
mediated by membrane curvature and its fluctuations
[16] or by perturbations of the membrane thickness [17].

Our simple model of a polymer embedded in a bilayer
kept flat by lateral tension has several limitations. For in-
stance, we disregarded the possibility of a backbone elas-
ticity, apart from the stiffness of the polymer constitu-
ents. Also, we did not consider configurational fluctua-
tions of the polymers, but assumed them to be uniformly
curved. The persistence length was estimated only for a
polymer in the straight equilibrium state. Finally, the
present theory is restricted to small gradient angles, i.e.,
to the nearly flat membrane.

There is an analogy between the membrane shape Eq.
(2) and the Debye-Hiickel theory of the electrical contri-
butions of electrostatic double layers to the bending rigi-
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dity for cylindrically bent membranes [18]. The tilt angle
of the membrane ridge is related to fields of unequal
strength emanating from the two sides of the membrane.
In this analogy, J is best taken to correspond to the bulk
charge density. However, the Debye-Hiickel theory con-
tains no parameter analogous to AK/k which is the con-
trol parameter in the present case.
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APPENDIX: EFFECTIVE SHAPE OF A RELAXED
BILAYER CONTAINING A STRAIGHT CHAIN
OF POLYMERIZED MOLECULES

In this section we consider the molecular basis for the
rooflike shape of a symmetric surfactant bilayer contain-
ing a straight chain of polymerized molecules as intro-
duced in the main part of this work.

We start from the effects of polymerization on a molec-
ular scale. uv irradiation of polymerizable surfactant bi-
layer produces new chemical bonds between the mole-
cules involved in the polymerization process [1]. This re-
sults, as a rule, in changes of the effective molecular
shape, in particular, its conic character [19], which we
express in terms of a local spontaneous curvature of the
bilayer [10]. The effects of possible changes of the bend-
ing moduli k and K will be considered only at the end of
the Appendix.

We assume that each polymer is restricted to one of
the two monolayers. The local spontaneous curvature
will depend on where the new chemical bonds are located
along the surfactant molecule [1]. A water soluble poly-
mer anchored in the bilayer from one side also produces
local bilayer spontaneous curvature if its hydrophobic an-
choring groups have an effective shape different from that
of the surfactant molecules.

Local spontaneous curvatures modify the shape of the
membrane. To analyze this effect we consider an un-
stressed lipid bilayer which, being symmetric, has zero
spontaneous curvature in the unpolymerized state and al-
lows nonzero spontaneous curvature to be induced by po-
lymerization. Let us first consider a hypothetical situa-
tion where one of the molecules involved in the polymeri-
zation is separated from the polymer chain but keeps the
induced spontaneous curvature. If this molecule is em-
bedded into the initially flat unpolymerized bilayer it
forms a hat [20]. The top of the hat is formed by the po-
lymerized molecule and has the radius 7 as illustrated
in Fig. 5. For simplicity, we assume the hat to be axisym-
metric. In the brim of the hat, i.e., for r >, the un-
stressed membrane has zero total curvature. According-
ly, the cross section of the brim is given by

z=zo—roIn[(r/ry)+V (r/ry)?—1], (A1)
where z; is the height and 7 is the radius of the (imagi-
nary) circle at which the contour of the brim would make
the angle 7 /2 with the horizontal plane (see Fig. 5).
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FIG. 5. Schematic cross section of an axisymmetric hat.

We will consider hats with

7 mol >> rO . (AZ)

In this case the angle y made by the contour of the brim
with the horizontal plane (Fig. 5) obeys || <<1 and can
be approximated by

X=——=—" (A3)

It is useful to relate the parameter r, of the brim with the
characteristics of the polymerized molecule forming the
top of the hat. The spontaneous curvature J . of the po-
lymerized molecule is
o
Jmol =2

2
mol

(A4)

The angle ¢, formed by the top of the hat (Fig. 6) is

¢m01=2r0/rmol . (A5)

We are now in a position to analyze the bilayer shape
produced by a straight chain of equal hats as illustrated
in Fig. 6. For reasons of simplicity, we assume the hats
to be uniformly spaced and the chain to be infinitely long.
First we consider a chain where the distance L between
the tops of adjacent hats is much larger than the molecu-
lar dimension (Fig. 6)

L>ry - (A6)

This corresponds to an anchored polymer with large dis-
tances between the anchors. The deformation of the
membrane by the polymer chain can be obtained by su-
perimposing axisymmetric hats, one for each anchor, as
long as the inequality (A2) is satisfied.

In order to find the slope of the membrane as a func-
tion of the distance y from the chain [Fig. 6(b)] we calcu-
late the angle ¥ made by the membrane contour and the
horizontal. For r >>r,, the angle is given by

__dz__ 95y (A7)
dy S dr; dy '

where z;(r;) is the shape of one hat (A1) and the sum is
taken over all hats. For y >>L the sum can be approxi-
mated by an integral replacing the discrete distribution of

hats along the x axis by a homogeneous distribution of
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FIG. 6. (a) Shape of a relaxed bilayer con-
taining a straight chain of polymerized mole-
cules. The dashed line illustrates the approxi-
mation of the membrane shape by a roof with
b a sharp ridge. The ridge angle is @, (b)
Schematic projection of the polymer chain on
the horizontal plane.

density 1/L. Because of (A3) and the relationship

r =V x2+y? we thus obtain for the angle x
Y e o

=7— . (A8B)
X 2 2+yl f—oox2+y L

The result demonstrates that the slope angle y at large
distances y >>L does not depend on y. This may have
been expected because of the analogy of z(x,y) to the po-
tential of a straight chain of electric charges in two di-
mensions.

Although the details of the shape of the membrane at
small distances from the chain, y <L, remain to be ana-
lyzed, it appears reasonable to approximate the mem-
brane shape on the basis of the result obtained for large
distances. The effective shape of the membrane is a roof
with a sharp ridge as illustrated on Fig. 6(a) by the
dashed line. According to (A8), the angle ¢, made by the
ridge is given by

o
@o=2m 7
Substituting for r, from (A4) or (A5) we can relate the
ridge angle @, to the spontaneous curvature of a polymer-
ized molecule,

2
mol

(A9)

7

=7—J
Po= T s (A10)
and to the angle of the top of an isolated hat,
mol (Al 1)

Po=P L Pmol *

Note that the ridge angle @, is much smaller than the an-
gle of an isolated hat ¢_,,; when (A6) applies.

The other shape which we consider is that of an un-
stressed membrane containing a straight chain of closely
packed hats. It corresponds to a water soluble polymer
with hydrophobic anchors separated by short distances.
In the limiting case of tops in contact with each other
this model describes a membrane polymer produced by
uv irradiation of polymerizable bilayer.

Using as above the superposition of hats, one can see
that the mutual approach of the polymerized molecules
in the chain to distances comparable with molecular di-
mensions, L =~r_ ;, changes the shape of each hat. If the
top has the shape of a spherical cap at large separations,
it assumes a nearly cylindrical curvature as the hats ap-
proach each other. This is because each top is exposed to
the saddle curvature in the brims of the other hats. Pro-
vided the spontaneous curvature, the circular character,
and the radius of the hats do not depend on their separa-
tion, we obtain for the minimum spacing L =2r_ the
ridge angle @y=(7/2)r oJ; or @u=(7/2)py, from
(A10) and (A11), respectively.

Like the flat membrane, the roof is characterized by a
vanishing Gaussian curvature. The same applies to the
straight ridge into which a roof is transformed by lateral
tension. Being interested mainly in ridges in the
stretched and flat membranes, we did not consider any
upward or downward bend of the ridge line of the roof.
Such a bend is associated with Gaussian curvature.

In this section we have assumed so far the bending
moduli k and & to be uniform all over the bilayer. Both of
them can actually be different for a polymerized or an-
choring molecule in the bilayer. The differences of both
moduli produce interactions between the hat tops which
may be taken from the recent theory of Goulian, Bruins-
ma, and Pincus [16] and are assumed to be negligible in
the present context.
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Interestingly, a difference in K will affect the actual lo-
cal spontaneous curvature. To show this, we write down
the bending energy per unit area of a spherically curved
hat top

Lk +L1AR?—kJ poid

where AK is the increase of the modulus of Gaussian cur-
vature in the presence of a polymerized or anchoring
molecule in one of the monolayers. (AK has to be taken
because of the Gauss-Bonnet theorem). Minimization of
the last equation yields the actual local spontaneous cur-

vature,

K
* — r
k+1AK o -
2

The result is valid only for k++AK>0. Moreover, if Ak
is sufficiently positive, the polymerized molecule will as-
sume saddle curvature instead of spherical curvature. A
negative bending energy of the saddle is needed to com-
pensate the positive bending energy of the deformation
surrounding the saddle.
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